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Abstract

Given a finite set of points S ⊆ R
2, we define a proximity graph called as shape-hull graph(SHG(S)) that contains

all Gabriel edges and a few non-Gabriel edges of Delaunay triangulation of S. For any S, SHG(S) is topologically
regular with its boundary (referred to as shape-hull(SH)) homeomorphic to a simple closed curve. We introduce the
concept of divergent concavity for simple, closed, planar curves based on the alignment of curves in concave portions
and discuss various measures to characterize curves having divergent concavity. Under sufficiently dense sampling, we
prove that SH(S), where S is sampled from a divergent concave curve ΣD, represents a piece-wise linear approximation
of ΣD. We extend this result to provide a sculpting algorithm for closed surface reconstruction from a set of raw
samples. The surface is constructed through a repeated elimination of Delaunay tetrahedra subjected to circumcenter
and topological constraints. Theoretically, we justify our algorithm by establishing a topological guarantee on the 3D
shape-hull with the help of topological rules. We demonstrate the effectiveness of our approach with experimental results
on models with sharp features and sparsely distributed point clouds. Compared to existing sculpting approaches for
surface reconstruction that require either a parameter tuning or several stages, our approach is simple, non-parametric,
single stage and reconstructs topologically correct piece-wise linear approximation for divergent concave surfaces.
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1. Introduction

Given a finite set of points S ⊂ R
3, sampled from the

surface P of a real world object, the task of reconstructing
a model of P from S is referred to as surface reconstruc-
tion problem. Recently, the problem has gained a lot of
attention both in computer graphics and computational
geometry, especially due to the proliferation of laser scan-
ners and their wide applications in areas such as reverse
engineering, product design [1], cultural heritage [2], and
cartography [3], among others. Apart from laser scanners,
input point samples are also obtained from photogram-
metry technique or mathematical functions. Different ap-
proaches have been taken to solve the problem depending
upon the input data type or output reconstructed surface
[4]. Input data may be a registered point cloud equipped
with or without normals and the reconstructed model may
be a parametric or implicit surface or a triangulated sur-
face mesh.

Surface reconstruction is an ill-defined problem [5] as
there are several surfaces that might fulfil the topological
and geometric properties of the original surface. There-
fore, the main challenge for any surface reconstruction ap-
proach lies in mathematically defining a surface that best
captures the geometric and topological properties of the
original surface. It is well established that proximity in-
formation and neighborhood relationships of surface sam-
ples has a major role in defining the geometric shape of
any surface. Aimed at an approach that exploits these
two factors, we define a proximity graph called as shape-

hull graph (SHG) which is essentially a restricted Delau-
nay graph that consists of Gabriel edges [6] and a few
non-Gabriel edges. The boundary of SHG, referred to as
shape-hull (SH), represents the polygonal reconstruction
of a surface from its sample.

In computational geometry, sculpting refers to the pro-
cess of creating shapes or surfaces through a repeated
elimination of tetrahedra from an initial tetrahedral mesh.
We propose a sculpting algorithm for closed surface re-
construction based on three dimensional shape-hull graph,
taking a registered point cloud without normals (this is
referred to as raw point cloud data) as input and produc-
ing a triangulated surface mesh as output. The approach
combines a local measure (circumradius) and a global in-
formation (largest circumradius). As a consequence, no
user driven parameter tuning is required for the whole
reconstruction process. We observe that non-parametric
approach is a reasonable trade-off in many situations es-
pecially when considering that the parameter is critical to
the output of many established algorithms and these al-
gorithms provide only a limited guidance on selecting the
optimal parameter. Moreover, we also provide a guaran-
tee on the topologically correct reconstruction under the
theoretical framework based on divergent concave curves,
ǫ-sampling [7] and topological rules.

2. Related Work

Most of the current surface reconstruction methods fall
into two major categories: one class of surface reconstruc-
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tion techniques use implicit functions to represent surfaces
and the other methods use Delaunay/Voronoi based tri-
angulated mesh to represent the surface. One of the early
work in implicit surface reconstruction is the tangent plane
estimation method by Hoppe et.al. [8]. The method uses
principal component analysis to estimate the normals and
then employ neighborhood graph search to unify the in-
side/outside directions followed by reconstruction of sur-
face as the zero-level set of an implicit signed distance
function with the help of marching cube method. Ohtake
et.al [9] present a multilevel partition of unity (MPU) ap-
proach to reconstruction which basically tries to locally fit
the surface via quadratic functions blended by weighting
function (partition of unity). In [10], Kazhdan describes
a reconstruction algorithm which uses Stokes theorem to
compute an indicator function of the surface. Other re-
lated approaches compute indicator function of the un-
derlying shape by solving poisson equations [11], wavelets
[12] or generalized eigenvalue problem [13]. Approaches
like moving least square methods generally define the sur-
face as an invariant set of projection operator which in
turn is computed by numerical optimization on a locally
constructed implicit function [14, 15]. Another method to
implicit surface reconstruction is the computation of radial
basis functions (RBF) [16] or anisotropic basis functions
to represent the surface [17]. It is to be noted that most of
these techniques use acquired or estimated point normals
to facilitate the reconstruction process.

In computational geometry, several Delaunay/Voronoi
based surface reconstruction algorithms have been pro-
posed [5, 18], most of which provide provable theoreti-
cal guarantees on the quality of reconstructed output un-
der specific sampling model. Underlying intuition is that,
when the point sampling is dense enough and free of noises
and outliers, the neighboring points on the surface will
also be neighbors in the space and hence can be captured
with the help of Delaunay triangulations or Voronoi di-
agrams. Early work in this direction include sculpture
algorithm by Boissonnat [19] and three dimensional α-
shapes by Edelsbrunner et.al [20]. Thereafter, many re-
searchers approached reconstruction problem from a geo-
metric point of view, focusing on topology reconstruction
and providing guarantees on the quality of output under
dense sampling model such as ǫ-samples [7]. The model
of Delaunay/Voronoi together with ǫ-sampling (or a re-
lated sampling model) has been extensively studied and
many notable work have been proposed that include crust
[7], powercrust [1], r-regular shape reconstruction [21] and
cocone family of algorithms [22, 23, 24, 25].

Few other Delaunay based approaches assure a topo-
logical equivalence between the reconstructed surface and
the original surface S. Gopi et.al. [26] describe a tan-
gent plane based method that is guaranteed to construct
a model homeomorphic to the original surface when a lo-
cally uniform sampling condition holds. Edelsbrunner’s
WRAP [27] algorithm relies on the concepts of flow and
stable manifolds where the flow relation has been formu-

lated on the set of Delaunay simplices. An extension of
WRAP by Ramos et.al [28] uses ǫ-sampling model to pro-
vide guarantees such as tubular neigborhood and homo-
topy equivalences. Gezahegne [29] develop a hybrid ap-
proach to surface reconstruction based on sculpture and
cocone algorithms and establish a topological guarantee for
reconstruction of a piece-wise linear water-tight approxi-
mation. Approaches such as constriction [30], greedy algo-
rithm [31], ball pivoting [32], regular interpolant method
[33], geometric convection [34], hybrid sculpting [35], De-
launay based region growing [36] do not provide theoret-
ical guarantees but found to perform reasonably well for
a range of point sets. Moreover, some of them are rather
simplistic in nature and stand out in terms of their effi-
ciency. In general, Delaunay/Voronoi based approaches
are found to produce good approximations for dense uni-
formly sampled point cloud, work on input scans without
point normals and often compute output meshes with a
complexity in the order of input point set size.

The main contributions of this paper include:

• Divergent concave curves: We introduce the con-
cept of divergent concavity for simple, closed and
planar curves. We extend the concept of concavity of
a closed curve and define pseudo-concavity. Pseudo-
concavity along with other measures such as medial
balls, outer medial axis and bi-tangents are used to
characterize divergent concave curves.

• Shape-hull graph (SHG): We define a proximity
graph called as shape-hull graph which is capable of
capturing the proximity of sample points. Further,
we show that, for any set of points S sampled from
a divergent concave curve, the boundary of SHG is
regular and represents a polygonal reconstruction of
the curve.

• 3D Sculpting algorithm: We extend the concept
of SHG to three dimensions and propose a simple
and non-parametric sculpting algorithm for closed
surface reconstruction. Using the topological con-
straints, we show that the reconstructed surface is
always homeomorphic to a sphere.

3. Preliminaries

We consider a planar simple closed curve Σ. Let S be a
set of n points sampled from Σ and conv(S) be its convex
hull. Let int(conv(S)) and ∂conv(S) denote the interior
and boundary of the convex hull of S respectively. Let
d(x, y) = ‖x− y‖, denotes the Euclidean distance between
two points x, y ∈ S.

Definition 1. Voronoi cell (Vp):
Let x ∈ R

2. A Voronoi cell of p ∈ S is the set of all points
as close to p as to any other point in S:
Vp={x ∈ R

2 | d(p, x) ≤ d(q, x), where p 6= q and ∀q ∈ S}
[37].
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Definition 2. Voronoi diagram (Vor(S)):
The set of all points that belong to more than one Voronoi
cell (Vp) of S form the Voronoi diagram of S [37].

Definition 3. Delaunay triangulation (Del(S)):
The straight line dual graph of Vor(S) results in a pla-
nar triangulation called as Delaunay triangulation of S,
Del(S). [37]

To define shape-hull graph, we use the concept of simplicial
complex. A k-simplex is the non-degenerate convex hull
of k + 1 geometrically distinct points, v0, v1, ..., vk ∈ R

d

where k ≤ d [38] (Definition 4).

Definition 4. k-simplex (σk):
It is the intersection of all convex sets containing (v0, v1, ..., vk).

i.e., σk={x ∈ R
d | x =

∑k

i=0 αiv
i with αi > 0 and

∑k

i=0 αi = 1}

According to the Definition 4, vertex is 0-simplex, edge
is 1-simplex, triangle is 2-simplex and tetrahedron is 3-
simplex. The convex hull of any non-empty subset of the
(k + 1) points that defines a k-simplex is referred to as a
face of that simplex. Like simplices, vertex is a 0-face,
edge is a 1-face and so on. A (k − 1)-faces of a k-simplex
is called as a facet.

Definition 5. Simplicial complex [38]:
A simplicial complex, K is a set containing finitely many
simplices that satisfies the following two restrictions:

• K contains every face of every simplex in K;

• For any two simplices, σ, τ ∈ K, their intersection
σ ∩ τ is either empty or a common face of σ and τ .

(a) Non-regular K2 (b) Regular K2

Figure 1: Examples of simplicial 2-complexes. Figure 1(a)
consists of two components C1 &C2. The constructs which
violates the regularity of a simplicial 2-complex are shown
in Figure 1(a) and denoted by the symbols: J-junction
point, DE-Dangling edge and B-Bridge.

A two dimensional Delaunay triangulation is an exam-
ple of simplicial complex. A simplicial k-complex, Kk is
a simplicial complex where the largest dimension of any
simplex is equal to k. Edges which do not belong to any
triangle in a K2 are either bridges, dangling edges or dis-
connected line segments (see Figure 1(a)). In a simplicial

2-complex, if one or more triangles are attached to any
other k-simplex (where k = 1 or 2) through only one of
its vertices, then that vertex is termed as a junction point
(see Figure 1(a)).

Definition 6. Regular simplicial 2-complex (RK2): A sim-
plicial 2-complex K2 is said to be regular if it satisfies the
following conditions:

• All the points in K2 are pairwise connected by a path
on the edges.

• It does not contain any junction points, dangling
edges or bridges.

A regular simplicial 2-complex is a full dimensional
simplicial complex in which every simplex is incident to
a highest dimensional simplex (i.e. triangle in this case).
An edge in RK2 is a boundary edge if it is incident to a
single triangle.

Definition 7. Boundary triangle:
A triangle in RK2 is a boundary triangle if it is incident
to at least one boundary edge. In Figure 1(b), triangles
with orange edges represent boundary triangles.

The triangles in RK2, which share all the three edges with
other triangles are termed as interior triangles. Triangles
with three black edges in Figure 1(b) are examples of an
interior triangles.

Definition 8. Thin triangle:
A triangle in RK2 is said to be a thin triangle if its cir-
cumcenter lies strictly external to it. All other triangles
are referred to as fat triangles.

A thin triangle is essentially an obtuse triangle and a fat
triangle can be either an acute or a right angled triangle.

3.1. Divergent Concavity of Curves

A simple closed curve Σ bounds a region referred to as
interior of Σ (I(Σ)), that lies to the left when travelled in
counter clockwise direction along Σ. Jordan curve theorem
establishes that a simple closed curve divides the plane into
a well-defined interior (I(Σ)) and exterior (I(Σ)).

Curve Σ is said to be convex, if the line segment be-
tween any two points on the curve falls in the interior,
I(Σ). Otherwise it is concave. The curvature κ at a point
p of Σ is the rate of change of direction of the tangent line
at p with respect to arc length s. An inflection point (IP )
on the curve is a point where κ = 0 but κ

′

6= 0 (Figure 2).
Since reconstruction in the presence of concave portions
is extremely difficult, we restrict our attention to concave
curves. Concave portions of a curve is characterized by
the sign of the local curvature κ. Concave portions ex-
ists between two inflection points and has a negative local
curvature sign (κ < 0).

A bi-tangent (BT ) to a curve Σ is a tangent line L

that touches Σ at two distinct points. The points where
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Figure 2: A curve with inflection points (IP ), a concave
portion (curve portion with κ < 0), Exterior bi-tangent
(BT ), and the bi-tangent points (BTP ).

BT touches Σ is referred to as bi-tangent points (BTP ).
We consider only the bi-tangents lying completely in the
exterior of the curve (I(Σ)) for our discussion (i.e. BT

refers to exterior bi-tangent). With these basic terminol-
ogy, we introduce the definition of pseudo-concavity of Σ.

Definition 9. Pseudo-concavity:
The portion of Σ lying between two bi-tangent points hav-
ing at least one sub-portion with κ < 0 is called as pseudo-
concave portion of Σ, denoted by C(Σ).

Figure 3: Illustration of pseudo-concave region (CR(BTi),
grey color region in Figure 3(a)), pseudo-concave por-
tion (C(BTi), red color curve portion shown in Figure
3(a)), extremal bi-tangent (blue color) and non-extremal
bi-tangents (green color in Figure 3(b)).

Red colored portion of the curve in Figure 3(a) is an
example of pseudo-concave portion. Here are some obser-
vations on pseudo-concavity of a curve (Figure 3).

1. Multiple pseudo-concave portions are possible for Σ.

2. A pseudo-concave portion C(Σ) always contains por-
tions with κ > 0.

3. Every BT induces a C(Σ). The region bounded by
BT and the corresponding C(Σ) constitutes the pseudo-
concave region of BT , denoted by CR(BT ) (grey col-
ored region in Figure 3(a)).

4. There may exist some BTi in CR(BTj). Here, BTi

is referred to as non-extremal BT (green color bi-
tangents in Figure 3(b)).

Medial axis of Σ is closure of the set of points in the plane
which have two or more closest points in Σ [7]. Medial

axis also contains the centers of all osculating disks (empty
disks tangent to Σ). A medial ball B(c, r), centered at c ∈
medial axis of Σ with radius r, is a maximal ball whose
interior contains no points of Σ. For any Σ, there exists
inner and outer medial axis. We restrict our attention to
outer medial axis and the corresponding medial balls for
defining divergent pseudo-concavity.

Figure 4: Illustration of divergent and non-divergent
pseudo-concavities.

Definition 10. Divergent pseudo-concavity:
A C(BT ) of Σ is said to be divergent, if the radii of medial
balls, B(c, r), ri monotonically increases as it goes along
the outer medial axis of C(BT ) from one end to the ex-
tremal BT end.

An example of divergent pseudo-concavity is illustrated in
Figure 4(a). For C(BT ) having non-extremal BTs, me-
dial axis may have branches that go separately to different
C(BT )s of non-extremal BTs. The Definition 11 is valid
in this case as well as the medial ball rolls only towards
extremal BT end (Figure 4(a)).

Definition 11. Divergent concave curve(ΣD):
A simple, closed planar curve Σ is said be divergent con-
cave if all its pseudo-concave portions (C(BT )) are diver-
gent.

Figures 4(a) & 4(b) illustrate examples of divergent and
non-divergent curves respectively. In Figure 4(b), radii
of medial balls continuously increase for some time, then
decrease for a smaller interval of time and then again start
increasing as the it approaches the corresponding extremal
bi-tangent. There are other type of non-divergent pseudo-
concavity where the radii of medial balls monotonously
decreases as it approaches the extremal bi-tangent.

In Del(S) of a finite set of points S sampled from a
ΣD, an external Delaunay triangle is a triangle, △x ∈
Del(S) which is partially or fully exposed to the exterior of
original curve ΣD.i.e. {△x} ∩ {I(Σ)} ⊆ {△x} \ {}, where
{} is the null set. External Delaunay triangles exist only
in the pseudo-concave regions.

We use ǫ-sampling [7] where the density depends on
the local feature size. Local feature size at a point p on Σ,
LFS(p) is the distance from p to the closest point on the
medial axis of Σ. This sampling is capable of quantifying
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the local level of detail at each point on a smooth curve.
Formally, ǫ-sampling is defined as follows:

Definition 12. ǫ-sampling [7]:
For a constant ǫ > 0, Σ is said to be ǫ-sampled by a

finite set of samples S, if
∀p ∈ Σ, ∃s ∈ S such that ‖p− s‖ ≤ ǫLFS(p).

In ǫ-sampling, curve portion which encapsulates more
details are sampled densely. Hence the concave portions of
ΣD are densely sampled. Dense sampling implies that, ex-
ternal Delaunay triangles are very thin triangles and their
Voronoi vertices tends to approximate outer medial axis of
C(BTj). Consequently, circumcircles of these triangles ap-
proximate the medial balls. Under such a dense sampling
assumption, we prove Lemma 3.1.

Figure 5: Illustration of two cases for Lemma 3.1.

Lemma 3.1. In Del(S), where S is ǫ-sampled from a di-
vergent concave curve, ΣD, external Delaunay triangles in
each CR(BTj) are obtuse with their longest edge facing
BTj

Proof Assume the contrary. Two cases occur, i.e. first,
the existence of obtuse external Delaunay triangles whose
longest edge not facing BTj and the second, existence of
acute external Delaunay triangle. Under dense sampling
assumption, second case contains isosceles triangles. We
use Figure 5 to show our claim in both the cases. In both
the cases, more than half portion of the ball B1 lies be-
low the edge (P,R) and the major portion of the ball, B2

lies above (P,R). If the medial ball, B1 has a larger ra-
dius than B2, it cuts the curve somewhere below the edge
(P,R). As per the definition of medial ball, this is never
possible and hence the radius of B1 must be less than the
radius of B2. Radius of B1 ≤ radius of B2 violates the
divergent concavity of ΣD and hence the assumed cases
are never possible. Hence the lemma.

4. Shape-hull Graph

Armed with the preliminaries and definitions, now we
formally define shape-hull graph. We denote the ball hav-
ing radius r passing through two distinct points x, y by
B(r, x, y). Boundary of a simplicial complex, denoted by
∂, consists of only boundary edges (boundary edge is de-
fined in Section 3).

Definition 13. Shape-hull graph (SHG):
Shape-hull graph of S, SHG(S) is a simplicial complex
that consists of Delaunay edges (p, q) which satisfy either
of the following properties:

1. B(d(p,q)2 , p, q) does not contain any other point l ∈
S \ {p, q}.

2. If B(d(p,q)2 , p, q) contains a point l ∈ S \ {p, q} such
that △pql ∈ Del(S), then either of the following is
true.

(a) Circumcenter of Delaunay triangle, △pql lies
on or interior to ∂SHG(S).

(b) All three vertices of Delaunay triangle, △pql lie
on ∂SHG(S).

Figure 6: (a). Sample (b). Delaunay (c). Shape-hull
graph and (d). Shape-hull.

Definition 13 implies that SHG(S) contains all fat Delau-
nay triangles and a few thin Delaunay triangles. Con-
sequently, SHG(S) ⊆ Del(S). To represent polygonal
curve of a given sample points, we extract the boundary of
SHG(S), which is referred to as shape-hull (SH(S)). Fig-
ures 6(c) & 6(d) show an example of SHG and its bound-
ary (SH) respectively.

SHG captures interesting properties of S, such as prox-
imity information of points and geometric shape of S for
a range of point sets. A study on other proximity graphs
such as Gabriel graph (GG), relative neighborhood graph
(RNG) and minimal spanning tree (MST)along with SHG(S),
we found the relationship among them asMST ⊆ RNG ⊆
GG ⊆ SHG(S) ⊆ Del(S). In Euclidean plane, this is
a well established result [39] except the relation between
GG(S) and SHG(S). We state the relation between GG
and PSH in Lemma 4.1.

Lemma 4.1. For a finite set of points S ⊆ R2, GG(S) ⊆
SHG(S).

Proof By definition, Gabriel graph contains an edge (p, q)
(p, q ∈ S), if and only if the circle passing though the
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points p and q centered at the edge (p, q) is empty. Us-
ing the empty circle property, it has been shown that,
GG(S) ⊆ Del(S) [39]. This directly implies that GG(S)
contains all edges of Del(S) except the longest edges of
thin Delaunay triangles. On the other hand, from Def-
inition 13, it directly follows that SHG(S) consists of
all Gabriel-edges (condition 1) and few non-Gabriel edges
(condition 2). Further, SHG(S) ⊆ Del(S) (Definition 13)
and hence GG(S) ⊆ SHG(S).

Figure 7: Illustration of Lemma 4.2.

Lemma 4.2. [REGULARITY LEMMA] For a finite set
of points S ⊆ R2, SHG(S) is a regular simplicial complex.

Proof We need to show two points. Each pair of points
in SHG(S) is connected by a path and SHG(S) is free
of junction points, dangling edges and bridges. To prove
these points, we make use of a case (SHG) shown in Fig-
ure 7 where two groups of points, denoted by A and B are
connected by two adjacent triangles shown in green box.
For the sake of argument, we assume that the triangles
in the green box are obtuse. In such a case, despite the
two triangles in the green box contains non-Gabriel edges,
the condition ii(a) of Definition 13 (all the three vertices
of both triangles are boundary vertices) makes sure that
these triangles are never deleted from SHG. So from an
extreme case like this, we can see that any pair of points
are connected by a path in SHG. A similar argument
and case hold good for the absence of bridges in SHG.
Dangling edges are possible if two thin boundary triangles
(whose circumcenter lie outside ∂SHG) share a common
edge (Figure 8(d)). However, in this case, if one trian-
gle gets removed, then all the three vertices of the other
triangle becomes boundary vertices and hence will be re-
tained in SHG (again due to condition ii(a) of Definition
13). Similarly, due to the same condition of SHG defini-
tion, junction points(Figure 8 (a)) are also not possible in
SHG. Hence the lemma.

Corollary 4.3. For a finite set of points S ⊆ R2, SH(S)
is homeomorphic to a simple closed curve.

Proof Assume the contrary, i.e. SH(S) either contains
more than one disconnected components or is an open
curve. If it contains two (or more) disconnected compo-
nents, it must have come from two disconnected compo-
nents of its corresponding SHG(S) and contradicts the
regularity of SHG(S)(Lemma 4.2). A similar argument

suffice for non-simple curves violating the regularity of
SHG(S) due to junction points. If SH(S) is an open
curve, then it contains two dangling edges on either end
of the curve. According to the definition of SHG, such
dangling edges are never considered as boundary edges.
Further, dangling edges are never present in SHG(S) (due
to Lemma 4.2). Hence SH(S) is always a simple closed
curve. Hence the corollary.

Figure 8: Illustration of different SHGs for certain point
sets. Figures 8(a)-(c) show the case where two thin bound-
ary triangles share a common interior point and Figures
8(d)-(f) show the case where two thin boundary triangles
share a common edge.

A point set can have different shape-hull graphs as illus-
trated in Figure 8. This arises when two thin boundary tri-
angles with circumcenter lying exterior to ∂SHG(S), share
a common edge or a common interior point in Del(S). We
call such triangles as candidate triangles. If one triangle
gets removed, the other one will be retained in the shape-
hull graph due to the regularity constraint. So, the total
number of SHG for a point set can be expressed in terms
of number of candidate triangles (t∗) it contains and it’s

trivial to observe that this number is Θ(2
t
∗

2 ).
It can be noted that, for divergent concave curves,

the only region where the boundary to be detected from
Del(S) are pseudo-concave regions.

Lemma 4.4. SH of an ǫ-sampled smooth divergent con-
cave curve ΣD contains only the edges between every pair
of adjacent samples for ǫ < 1.

Proof For S, ǫ-sampled from a smooth curve and ǫ <

1, Del(S) contains an edge between every pair of adja-
cent samples (proved in Theorem 12, [7]). We already
know that SHG(S) ⊆ Del(S). For an ǫ-sample S of ΣD,
SHG(S) does not contain an edge in any of its pseudo-
concave regions (implied by Lemma 3.1) and hence SH

constitutes the boundary of S. Further we need to show
that an edge between adjacent samples never gets deleted
in SHG(S) and consequently in SH(S). This statement is
an immediate consequence of regularity lemma for SHG(S)
(Lemma 4.2) and the second condition of Definition 13.
Since SH(S) consists only of boundary edges, all remain-
ing edges between non-adjacent samples (edges lying in-
terior to ΣD) will be omitted in SH(S). Hence SH(S)
contains only the edges between every pair of adjacent
samples.
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As far as geometric guarantees of SH(S) is concerned,
Theorem 4.5 put forward by Amenta et.al. [7] is equally
applicable to SH(S) under the theoretical frame work
based on ǫ-sampling, divergent concavity of curves and
Delaunay triangulation.

THEOREM 4.5. [7] The distance from a point p on an
ǫ-sampled smooth curve F to some point on the polygonal

reconstruction of the samples is at most ( ǫ
2

2 )LFS(p).

5. Surface Reconstruction

In this section, we present a simple sculpting algo-
rithm to compute shape-hull of surface samples in R

3.
In 3D, SHG(S) consists of Gabriel tetrahedra and few
non-Gabriel tetrahedra whose circumcenter (CC) lies in-
side ∂SHG(S) or whose deletion violates the topologi-
cal regularity. The proposed algorithm is inspired from
Boissonat’s sculpture [19] method but adopts a different
sculpting strategy. We use the combination of circumcen-
ter and circumradius of Delaunay tetrahedron to capture
the structure of Delaunay tetrahedra and consequently the
geometric proximity of surface samples.

Intuitively, a tetrahedron with one boundary face and
its circumcenter lying exterior to the boundary of the tetra-
hedral mesh tends to have a wider solid angle at the ver-
tex opposite to the boundary face as illustrated in Figure
9. A wider solid angle at the opposite vertex D pushes
the boundary vertices further away from each other by
making them likely non-neighbors on the surface to be re-
constructed. In Figure 9(a), boundary face △ABC has
longer edges compared to the interior edges of the tetrahe-
dron. On the contrary,△ABC has shorter edges compared
to the interior edges in Figure 9(b). Intuitively, the face
△ABC in Figure 9(a) and eventually the tetrahedron it-
self does not play a role in defining the surface and may
be deleted.

Figure 9: Tetrahedra with one boundary face, △ABC

(in both Figures 9(a) & 9(b)). Grey color ball is the cir-
cumsphere of tetrahedra. In Figures 9(a) & 9(b), vertex
D is opposite to △ABC and lies interior to the Delaunay
mesh. cc indicates the circumcenter of the tetrahedron.

Similarly, a tetrahedron having two boundary faces
with its circumcenter lying exterior to the boundary of
the tetrahedral mesh is found to have a wider planar an-
gle between its interior faces as shown in Figure 10(a). A
wider planar angle pushes the vertices opposite to the in-
terior edge to lie at a relatively larger distance and makes

them non-neighbors on the surface. So the tetrahedron
(in effect two boundary face and the edge shared by them)
may be deleted. In our approach, we remove all bound-
ary tetrahedra of the type shown in Figures 9(a) & 10(b)
without relaxing the topological regularity to reconstruct
the required surface.

Figure 10: Tetrahedra with two boundary faces, △ABC

and △ABD (in both Figures 10(a) & 10(b)). Circum-
sphere is shown in grey color. Observe the planar angle
at edge CD. It’s wider for the tetrahedron in Figure 10(a)
than the one in Figure 10(b). Consequently, points A and
B lie relatively at a larger distance in Figure 10(a). cc
indicates the circumcenter of the tetrahedron.

5.1. Algorithm

The algorithm starts by constructing the Delaunay mesh,
Del(S) of the given point cloud S. Then it iteratively
removes all deletable tetrahedra whose circumcenter lies
outside the intermediate boundary ∂Di (∂Di is the bound-
ary of restricted Delaunay mesh Di obtained after each
iteration). A tetrahedron Ti in Di is deletable if if it
satisfies either of the following rules:

Definition 14. Tetrahedra removal rules:

1. Ti has only one face (f) on ∂Di and the vertex op-
posite to f is not on the boundary of Di.

2. Ti has exactly two faces (f1 and f2) on the boundary
of Di and the edge of Ti, opposite to the common
edge of f1 and f2 is not on the boundary.

Basically these rules are designed to ensure the topolog-
ical equivalence of the reconstructed surface to a sphere.
Corollary 5.1 establishes this claim. Deleting a tetrahe-
dron with three boundary faces will disconnect a point
from Di and hence we restrict the removal process only to
tetrahedra with one or two boundary faces. The algorithm
terminates when no more tetrahedra can be removed from
Di and the boundary of non-eliminated tetrahedra consti-
tutes the surface approximation of S. Algorithm 1 presents
the pseudo code of the surface reconstruction.

Corollary 5.1. ∂Di of Delaunay sub mesh Di obtained
in each iteration i, is topologically equivalent to a sphere.

Proof This is the 3D equivalent to Corollary 4.3. Ini-
tially, D0 = Del(S) and ∂D0 is the convex hull of S which
is topologically equivalent to a sphere. We need to show
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Algorithm 1: SHAPE-HULL(S)

Input: Point set S
Output: Triangulated surface mesh B

1 Construct D0=Del(S);
2 Construct the heap priority queue, PQ containing
deletable boundary tetrahedra of D0, sorted in the
descending order of their circumradii;

3 while PQ is not empty do
4 T=root(PQ), delete T from PQ;
5 if T is deletable& circumcenter(T ) lies outside

∂Di then
6 Delete T from Di;
7 Add the deletable neighbors of T to PQ;

8 end

9 end
10 return Triangulated surface mesh, Dk

that the deletion of Ti does not affect the topology of Di.
To establish this claim, we argue that each edge in ∂Di is
incident to exactly two boundary triangles and each vertex
in ∂Di is incident to a set of neighboring triangles home-
omorphic to a disk. This is true for ∂D0. It can be easily
verified that the claim is true for Di due to tetrahedral
removal rules given in Definition 14.

5.2. Selection Criteria

In sculpting algorithms, selection criteria, i.e. selection
of tetrahedra for removal plays a crucial role in defining the
geometrical correctness of the reconstructed surface. It is
unknown what criterion will work well for a wide range of
point set and difficult to find one as the requirement may
vary depending on the algorithms. Different selection cri-
teria have been employed in various sculpting algorithms.
Sculpture [19] algorithm uses a value, V (Ti) defined by the
maximum distance between the faces of a boundary tetra-
hedron, Ti and the associated parts of the circumsphere
of Ti as the selection criterion. This removal order may
produce deadlock tetrahedra on the reconstructed surface.
Deadlock tetrahedra are non-removable tetrahedra (due to
tetrahedra removal rules) which are clearly external to the
polyhedral representation of the point set. Veltkamp [30]
employs γ− indicator (ratio between the radius of the cir-
cumsphere of Delaunay tetrahedron and the radius of the
circumcircle of the boundary face) which may generate
long and skinny triangles on the surface. Hybrid sculpting
[35] selects the tetrahedra based on the magnitude of the
longest edge of boundary tetrahedron. However, longest
edge does not capture the geometric property of a tetra-
hedron in its entirety.

We use circumradius of a tetrahedron as the selection
criterion. Tetrahedron with largest circumradius gets re-
moved first. The reason for choosing circumradius as cri-
terion is that when combined with the location of circum-
center, circumradius serve as an effective tool in capturing

(a) CR/S (b) R (c) CR (d) V

Figure 11: Experiment on selection criteria. It is appar-
ent from the Figure 11(c) that selection based on circum-
radius generates comparatively better result. In Figure,
CR refers to circumradius, S-shortest edge and V-volume
of tetrahedron. R refers to random removal.

the geometric proximity of surface samples as already de-
scribed and illustrated in Figures 9 and 10. Moreover, we
experimented with few selection criteria such as volume,
ratio of circumradius to the shortest edge, side length and
circumradius of tetrahedra. Tetrahedra with the largest
quantity was deleted first. From the experiment, selection
criterion that found to perform well for different data sets
is circumradius (Refer Figure 11 for the results of pig point
cloud using different selection criteria). For ordering the
boundary tetrahedra according to their circumradius, we
employ a priority queue using heap.

5.3. Complexity

In 3D, construction of Delaunay triangulation takes
O(n2 logn) in the worst case [19]. Let us denote the num-
ber of Delaunay tetrahedra in conv(S) by tc and the num-
ber of tetrahedra in the reconstructed surface by td. Let
k = tc − td. While loop iterates for k times and each
iteration costs O(log n) for push and pop operations of
priority queue. Topology checking and deletion of tetra-
hedra from Delaunay triangulation data structure can be
done in constant time. So given Del(S), algorithm takes
O(k logn) time to reconstruct the surface. The preced-
ing complexity implies a direct relation between the time
taken for sculpting and the concaveness on the surface.
For surfaces having large concave portion, k tends to be
large and as a result, the reconstruction time will be sub-
stantially increased. However, the worst case time com-
plexity of shape-hull algorithm is O(n2 logn), dominated
by Del(S) construction.

5.4. Comparison with Sculpting Algorithms

As pointed out in Section 5.2, shape-hull algorithm
differs from sculpture [19], constriction [30] and hybrid
sculpting [35] algorithms in terms of the selection criteria.
Constriction algorithm, starts withDel(P ) (γ([−1, 1], [0, 1]))
and uses the fundamental rules of tetrahedra removal (Def-
inition 14) to construct a pruned γ-graph that interpolates
the points. In each iteration, the boundary tetrahedra are
eliminated based on γ-indicator which is a value based
on the ratio between the radius of the circumsphere (R)
and the radius of the circumcircle (r) of the boundary
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face (c0 = 1 − r
R
)(Figure 12). If there are two boundary

faces, then sum of the γ-indicators of each one is consid-
ered. The boundary tetrahedron with the smallest sum of
γ-indicators is removed in each iteration.

Figure 12: γ-indicator functions in 2D. Figure 12(a) has a
γ-indicator > 0 whereas Figure 12(b) has γ-indicator < 0.
[Image courtesy: Veltkamp [30]].

Both, the constriction and shape-hull algorithms de-
pends on a closely related but different selection criterion
which uses circumcenter and circumradius. So it is worth-
while and necessary to analyze and study the relationship
between both the methods and the corresponding selection
criteria. Essentially, both the selection criteria capture
the angle at the vertex opposite to the boundary face of
a tetrahedron. In addition to the angle, our selection cri-
teria quantifies the size of the tetrahedron, which can not
be achieved through γ-indicator. In certain instances, the
boundary triangle with the smallest γ-indicator may not
be a good choice as illustrated in Figures 13(c) & 13(d).
We observe that wider solid angle at interior vertex to-
gether with tetrahedron constitutes a better local measure
to facilitate the reconstruction. Moreover, γ-indicator in-
curs an additional computational overhead of division ( r

R
)

which definitely makes an impact on the running time.

Figure 13: Comparison of SHG(S) with pruned γ −
graph(S) for a 2D point set. Two different sized obtuse tri-
angles (A & B) are attached to the vertex encircled in blue
color such that the vertex act as an interior vertex to them
in some iterations of both the algorithms. Since the small
sized triangle (B) has a wider solid angle at the interior
vertex and hence a smaller γ-indicator value, constriction
algorithm removes it in an earlier iteration. However, since
we use circumradius to order the removal, the large sized
triangle (A) gets removed first giving a reasonably good
shape of S.

In constriction, boundary tetrahedron with an interior
circumcenter may be removed if it respects the tetrahedra

removal rules. As opposed to this, no tetrahedra with
circumcenter lying interior to the boundary are removed
in shape-hull. If the constriction process get stuck with
deadlocked tetrahedra then more overlapping 3-simplices
are created by fine tuning the value of parameter c01 in the
interval [−1, 0). However, for a particular input sample,
it’s impossible to tell in advance which value of c01 will
guarantee a hamiltonian polyhedron and hence completely
relies on trial and error method. On the contrary, shape-
hull does not rely on any external parameter and for a
densely sampled divergent concave surfaces, it guarantees
to interpolate the points.

Though, constrained sculpting [29] employs circumra-
dius as the selection criterion, it uses a different removal
strategy which depends on the goodness measure of bound-
ary faces inferred through cocone [22] test. One advantage
of hybrid and constraint sculpting algorithms is that com-
pared to the other three, it can construct surfaces with
genrae. Both the algorithms use the concept of pseudo-
prism to construct the genus boundary. However, these
algorithms alternates between three stages until the ter-
mination criteria is met and hence may take longer com-
putational time. To the best of our knowledge, apart from
topological guarantees based on the tetrahedra removal
rules, the previous sculpting algorithm gives no bound on
the specific sampling distance for which an exact recon-
struction is guaranteed. As opposed to this, 3D shape-hull
algorithms relies on the theoretical framework designed for
2D shape-hull (Section 4).

6. Experimental Results

Our algorithm was implemented in C++ using De-
launay triangulation and geometric predicates available
in Computational Geometry Algorithms Library (CGAL).
The algorithm demands fast construction of Delaunay tri-
angulation in order to efficiently scale for large models and
exact computations of circumcenters and circumradii of
Delaunay tetrahedra for ordering and eliminating tetrahe-
dra from the intermediate boundary. Fortunately, CGAL
offers a kernel for exact predicates that computes geomet-
ric predicates such as circumcenter and circumradii with
numerical certainty and allows fast point location queries
to construct optimal Delaunay triangulation. Having com-
pared with the sculpting algorithms in Section 5.4, we now
analyze various properties of the reconstructed models and
qualitatively compare our results with the results gener-
ated by various state of the art algorithms such as power-
crust [1], robustcocone [23] and screened Poisson [11]. It
is to be noted that all the three algorithms (powercrust,
robustcocone and poisson) depend on multiple external
parameters and hence we had to try out several parame-
ters (in fact, different combinations of parameters where
each parameter was picked from the range of values pro-
vided along with the algorithm) to obtain the best possible
results in our experiment.
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Figure 14: Models reconstructed by our algorithm.

Feature preserving reconstruction: We tested our
method on several publicly available data sets from either
Stanford 3D scanning repository (bunny) or Aim@shape
repository(bimba, sheep, fandisk, foot etc.). Figure 14
shows the models reconstructed by the proposed algorithm
for various point clouds of different sizes. The algorithm
is able to reconstruct very fine features of several models
such as intertwined hair of bimba (Figures 14(a) & (b)),
imprints on the base of budha model(Figure 14(e) & (f)),
wrinkles on the forehead of caesar (Figure 14(d)), protu-
berances on the bumpy sphere (Figure 14(g)) and furs of
sheep (Figure 14(h)).

Figure 15: Results on down-sampling experiment on
bunny model. Insets show the left eye of each recon-
structed bunny model for 81215 point cloud.

Robustness to non-uniform sampling: In surface
reconstruction, the reconstructed model is expected to match
the original surface in terms of topological and geomet-
ric properties [5]. The major challenge of the problem
lies in the reconstruction of a model from a sparse, non-
uniform and raw point samples, that approximates the
original surface S with reasonable accuracy. Figure 15
illustrates the adaptivity of our algorithm to the succes-
sive down sampling of raw point cloud. For down-sampling
bunny point cloud, we used Poisson disc sampling [40] that
refines the existing samples and generates a non-uniform
(specifically semi-random) point cloud. In Figure 15, one
can observe that screened Poisson progressively shrinks,
left ear of the bunny distorts in the second stage and sub-
sequently merges with the right ear in the third stage of
under-sampling. Similarly, robust cocone starts degrad-
ing from the second stage, important features fades away
in the last stage, especially the left ear gets disconnected
into pieces. In contrast, powercrust is found to be more
resilient to down-sampling. In the third stage, one can ob-
serve few deadlocked tetrahedra in shape-hull. One obvi-
ous reason for the presence of such undesirable tetrahedra
is the violation of divergent concavity between the left ear
and the body of bunny due to heavy under-sampling.

Figure 16 shows the evaluation of the under-sampling
results performed using root mean square (RMS) of Haus-
dorff distances computed with METRO [41]. The results
indicate that, our method performs well in all the three
stages of the sampling, especially for lower samples (722
points) where our method, despite having few unwanted
tetrahedra on the reconstructed model, outperforms the
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Figure 16: Bar charts of the root mean square (RMS) dis-
tances between the reconstructed bunny models (under-
sampling experiment) and the reference model.

Figure 17: Models reconstructed by our method for sparse
point clouds of star and knob.

other three algorithms. In addition to this, our approach
is also capable of reconstructing models from very sparse,
non-uniform point clouds as shown in Figure 17.

Figure 18: Reconstruction of the screwdriver (first row),
fandisc (second row) and shark (third row) data sets by
(a). Powercrust (b). Robust cocone (c). Screened Pois-
son and (d). the proposed algorithm. Close-ups show the
sharp head of screw driver, a corner of fandisc and pelvic
fin of shark.

Sharp edges and corners: Figure 18 shows how var-
ious algorithms reconstruct models with sharp edges and
corners. We consider raw point clouds of three models for
the experiment: screw driver containing 27152 points, fan-
disc containing 11984 points and shark containing 10054
points, all of which possess several sharp features. An edge
(a curve of non-smooth points on the surface) is consid-
ered to be sharp, if the dihedral angle around the edge is
bounded away from π degrees. Correspondingly, a sharp
corner is a non-smooth point on the surface whose exterior
solid angle is bounded away from 2π degrees. Figure 18
broadly indicates that the Delaunay based methods cap-
ture the sharp features better than the Screened Poisson
method. This is evident from the close-ups of screened
Poisson models in Figure 18 (c), where the edges leading
from the fandisc corner are round and hence does not cap-
ture the sharpness property. Further, dorsal and pelvic
fins of the screened Poisson shark model are distorted and
it’s tail is round and bulgy. Among the Delaunay based
algorithms, our method seems to have achieved a better re-
construction, especially when comparing the way the three
edges meet at the corner of fandisc in the close-ups of the
second row in Figure 18. Similarly, for shark model which
has sharp fins and tail, our method generates a better re-
sult as compared to the other three. All tetrahedra hav-
ing either sharp edges or sharp corners are found to have
their circumcenter inside the final reconstructed surface
due to the dihedral and solid angle constraints and hence
our algorithm clearly has a superiority in dealing with such
models.

7. Conclusion and Future Work

In this paper, the concept of divergent concavity for
simple and closed planar curves has been introduced. A
new proximity graph called as shape-hull graph has been
defined and its properties have been studied. It has been
shown that under ǫ-sampling model, the boundary of shape-
hull graph represents the polygonal reconstruction of a di-
vergent concave curve. Extending these ideas to three di-
mensions, we have presented a simple and non-parametric
sculpting algorithm for closed surface reconstruction from
raw point clouds. We have done some experiments on
under-sampled data and models with sharp features. Re-
sults show that our approach is capable of capturing very
fine details of the surfaces and reconstructs the models
from under-sampled and sparse data. Compared to other
prominent surface reconstruction algorithms, our approach
found to perform well in the case of reconstruction of mod-
els with sharp features. There are some avenues for fu-
ture work, especially the reconstruction of surfaces having
genus. An extension of the proposed algorithm for ad-
dressing non-divergent concave surfaces is also under our
consideration.
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